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The starting points of a theory for an ideal rigid plastic body are the 
determination of the limiting surface and of the law of flow. If one may 
say concerning the latter that it has already been considered in a 
sufficiently general way different opinions exist concerning the plasti- 
city condition. 

Ivlev [ 1 I was the first to consider the question of a possible choice 
of a plasticity condition. employing extremal principles. Upon invest- 
igating all possible limiting surfaces for the case of an ideal rigid 
plastic body, Ivlev showed that the Tresca plasticity condition was 
characterized by minimum work of the stresses for given incremental 
strains. This circumstance has as a basis the fact that the stress cor- 
responding to the beginning of flow in tension (or an equal value in com- 
pression) occurs experimentally at a unique value. Other possible cases 
for the given initial experimental point were not considered in the above 
paper, for in the construction of an isotropic theory the choice of the 
initial point must not have an effect upon the results. It is shown that 
if any other point is taken as the given initial point, the Tresca 
plasticity condition loses its extremal property. The first section of 
this paper considers the question of the choice of a flow condition for 
the case of given limiting stress in tension, when use is made of two ex- 
tremal principles. The general case of an arbitrary given point is in- 
vestigated in the second section. 

1. We assume that from experiments in tension or compression a value 
of stress is given for the beginning of flow (the same value for com- 

pression as for tension). Then, from the principle of symnetry and non- 

concavity of the flow surface, it follows that this value must lie with- 

in the limits of two hexagonal prisms. 'Ihe proof was given in the above- 

mentioned paper and we shall not repeat it here. 
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Figure 1 shows the projections of the principal axes on the plane 

a, -t a2 + a3 = const (1-l) 

in the space of the principal stresses ul, u2, u3 which are perpendicular 

to these prisms. The two hexagons represent the intersections of the 

prisms with this plane. The points A, are given. The inside hexagon re- 

presents the Tresca plasticity condition. We call the outside hexagon 

the K-surface, for brevity. 

The work of the stresses for incremental strains is determined from 

the following formula 

dW =ade (1.2) 

We investigate the minimum of dl for given incremental strains. We 

suppose that the modulus of the vector de remains the smae 

(&)2 + (de2Y + (de312 = @I2 (1.3) 

for all cases. We now study the change in d W under the condition (1.3). 

We prove that for all plasticity conditions 

the vector de will take such a direction that 

the dissipation of energy d I will be determined 

by the equation 

dW =2Kvsda (1.4) 

it 

o, 

Either the curve is smooth at 

touches the K-surface and d e 

or it has an angular point as 

the point where 

is colinear with 

in the Tresca 

condition, when the mean of the possible de ‘s 
FIG. 1. 

has such a direction that de is colinear with u. 

The chosen vector de has two equal components. In addition it must 

satisfy the condition 

del+de2+de3=0 (1.5) 

from which it is easy to obtain expression (1.4). 

It should be noted that the value of d I determined from (1.4) remains 

constant for any arbitrary direction of the vector u under the Mises con- 

dition, which has the form here 

(ul - cs2)2 + (u2 - a3)2 + (u3 - a1)2 = 8 k2 (l-6) 

We consider an arbitrary plasticity condition which lies partially 
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inside two Miser, circles. We take the point farthest removed from 0. At 

this point the condition 

I 0 I > 2K (1.7) 

is satisfied, Two possibilities may be considered: 

. a) The flow curve is smooth at this point. Then, by virtue of its 

maximal distance from the center, its tangent at the ooint is normal to 

u and de is colinear with CT. From the conditions 

the inequality 

(l.?), (1.5) and (1.7), 

dW > 2Kda / 6t3/d (1.8) 

will be satisfied for the point. 

b) The flow curve has a singularity at this point. Then, by virtue of 

its maximal distance in the direction of de, colinear with u, there 

exist possible means which satisfy condition (1.8). Consequently, if the 

flow curve falls outside the Mises condition there will exist a value of 

d IV exceeding in value that given by expression (1.4). 

We now pass on to the second principle. If the forces which excite 

the flow are given, then the stresses and the incremental strains are 

determined as to direction, and the modulus of the stress vector depends 

upon the plasticity condition. Only a uniform state of stress throughout 

the body is considered here. Consequently, if (1.2) is investigated for 

a maximum, the variables will be lo 1 and the angle between o and de, 
since de itself is determined only in direction. Therefore, in this 

case one may only compare the quantities 

FIG. 2. 

a maximum value at the 

and u are colinear. It 

the condition 

S=(dW/(de~)=/+xo& (1.9) 

When this relation is investigated for a 

maximun, it is clear that with the forces given, 

no limit is imposed upon the strains and only the 

direction of flow is prescribed. 

Analogously to the foregoing, 

S=2K 

the value of 

(1.10) 

all plasticity is satisfied at the point A, for 

conditions and has a stationary value for the 

Mises plasticity condition. Evidently S takes on 

edges B, on the K-surface in the case where de 
is easy to prove that there is a point satisfying 
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S<2K (1.11) 

for any flow curve partially inside the Mises circle 

In fact, the Mises plasticity condition will he a lower limit for all 

plasticity conditions satisfying the relation 

S>2K (1.12) 

It is necessary to remark here that S = 2K everywhere on the K-sur- 

face except at the edges, where S is reduced from 2K to the maximum. 

2. 'lhe preceding section contained a study of the case in which a 

unique experimental characteristic provides a limiting value of stress 

obtained from simple tests in tension or compression. Ivlev showed in his 

work that other experimental points are not considered, because of imper- 

fection in testing. Ivlev, considering the well-known fact that the 

majority of tests show better agreement with the Mises condition, attri- 

butes this to anisotropy, strain-hardening and similar phenomena. If one 

agrees with this argument, then it is of interest to note that a similar, 

purely logical study, with application of experimental principles, may 

also be made in the case when the experimental data yields a unique value 

of stress from tests in simple shear. Figure 2 shows the same plane as in 

Fig. 1 but with the corresponding points given. We shall not furnish a 

strict proof since it is trivial, but we shall indicate that here also 

the class of possible plasticity conditions is included between two 

hexagons. It is especially interesting that here the Tresca condition 

and the K-surface have changed places. 

It is quite evident that the application of extremal principles in 

this case leads to the same result; i.e. that the K-surface will now be 

an extremal according to the first principle and the Tresca condition 

according to the second. 

We note in passing that if the Tresca condition is considered from the 

point of view of the first principle only, as Ivlev did, then it does 

not exhibit extremal properties in general, but the Mises condition re- 

tains all its properties including the stationary property. 

We proceed further to investigate the most general case of the given 

experimental point, Figure 3, analogous to Figs. 1 and 2, shows this 

point as D,. It is easy to obtain the boundaries for the class of 

possible plasticity conditions. In the most general case, all possible 

plasticity conditions are found between the l2-sided figure and the ex- 

ternal broken line, which in itself may not be a flow condition since it 
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is not convex in the most general case. 

When investigated, the application of extremal principles leads to 
the 1Zsided figure as the best, and also shows that there is no unique 
curve. The Mises plasticity condition again con- 
serves its previous properties in this most 
general case. This result appears to be a con- 

? 

sequence of the well-known fact that the Mises 
4 4 

plasticity condition is a condition of constant 
distortion energy. 

0 

It is apparent that the Tresca condition in 
this most general case does not exhibit extremal 
properties, since the K-surface also does not. 4 4‘ 

And since from the point of view of constructing 
G 

a simple isotropic theory of ideal plasticity 
the choice of the given experimental point must 

FIG. 3. 

not affect the results of the study, then it may 
be affirmed that in the most general case of the given experimental point 
only the Mises plasticity condition appears to have an invariant physical 
characteristic. From this viewpoint Ivlev’s conclusion that only the 
Tresca plasticity condition has physical significance must give rise to 
doubt. It may be said that the logical construction of a simple plasti- 
city theory on extremal principles leads very successfully to the Mises 
plasticity condition. In addition, this condition is well supported with 
a large amount of experimental data. 
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